Ex Situ Culturing Experiments Revealed Psychrophilic Hydrogentrophic Methanogenesis Being the Potential Dominant Methane-Producing Pathway in Subglacial Sediment in Larsemann Hills, Antarctic
نویسندگان
چکیده
It was recognized only recently that subglacial ecosystems support considerable methanogenic activity, thus significantly contributing the global methane production. However, only limited knowledge is available on the physiological characteristics of this kind of methanogenic community because of the technical constraints associated with sampling and cultivation under corresponding environmental conditions. To elucidate methanogenesis beneath the glacial margin in East Antarctic Ice Sheet, we took an integrated approach that included cultivation of microbes associated with the sediment samples in the lab and analysis of mcrA gene therein. After 7 months of incubation, the highest rate of methanogenesis [398 (pmol/day)/gram] was observed at 1°C on a supply of H2. The rates of methanogenesis were lower on acetate or unamended substrate than on H2. The rates on these two substrates increased when the temperature was raised. Methanomicrobiales predominated before and after prolonged incubation, regardless whether H2, acetate, or unamended substrate were the energy source. Therefore, it was inferred that psychrophilic hydrogenotrophic methanogenesis was the primary methane-producing pathway in the subglacial ecosystem we sampled. These findings highlight the effects of temperature and substrate on potential methanogenesis in the subglacial sediment of this area, and may help us for a better estimation on the Antarctica methane production in a changing climate.
منابع مشابه
Psychrophilic pseudomonas in antarctic freshwater lake at stornes peninsula, larsemann hills over east Antarctica
The Larsemann Hills is an ice-free area of approximately 50 km(2), located halfway between the Vestfold Hills and the Amery Ice Shelf on the south-eastern coast of Prydz Bay, Princess Elizabeth Land, East Antarctica (69º30'S, 76º19'58″E). The ice-free area consists of two major peninsulas (Stornes and Broknes), four minor peninsulas, and approximately 130 islands. The Larsemann Hills area conta...
متن کاملPlankton diversity and aquatic ecology of a freshwater lake (L3) at Bharti Island, Larsemann Hills, east Antarctica
The Larsemann Hills range is an ice-free oasis on the Ingrid Christensen Coast of Princess Elizabeth Land, East Antarctica, which includes Bharti Island, Fisher Island, McLeod Island, Broknes Peninsula, Stornes Peninsula, and several other islands, promontories, and nunataks. The Larsemann Hills is an ice-free area of approximately 50 km2, located halfway between the Vestfold Hills a...
متن کاملDissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing
BACKGROUND Anaerobic digestion has been widely applied to treat the waste activated sludge from biological wastewater treatment and produce methane for biofuel, which has been one of the most efficient solutions to both energy crisis and environmental pollution challenges. Anaerobic digestion sludge contains highly complex microbial communities, which play crucial roles in sludge treatment. How...
متن کاملMethane production potentials, pathways, and communities of methanogens in vertical sediment profiles of river Sitka
Biological methanogenesis is linked to permanent water logged systems, e.g., rice field soils or lake sediments. In these systems the methanogenic community as well as the pathway of methane formation are well-described. By contrast, the methanogenic potential of river sediments is so far not well-investigated. Therefore, we analyzed (a) the methanogenic potential (incubation experiments), (b) ...
متن کاملBacterial succession in Antarctic soils of two glacier forefields on Larsemann Hills, East Antarctica.
Antarctic glacier forefields are extreme environments and pioneer sites for ecological succession. Increasing temperatures due to global warming lead to enhanced deglaciation processes in cold-affected habitats, and new terrain is becoming exposed to soil formation and microbial colonization. However, only little is known about the impact of environmental changes on microbial communities and ho...
متن کامل